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Abstract
Background  Acute abdominal pain (AAP) constitutes 5–10% of all emergency department (ED) visits, with 
appendicitis being a prevalent AAP etiology often necessitating surgical intervention. The variability in AAP 
symptoms and causes, combined with the challenge of identifying appendicitis, complicate timely intervention. 
To estimate the risk of appendicitis, scoring systems such as the Alvarado score have been developed. However, 
diagnostic errors and delays remain common. Although various machine learning (ML) models have been proposed 
to enhance appendicitis detection, none have been seamlessly integrated into the ED workflows for AAP or are 
specifically designed to diagnose appendicitis as early as possible within the clinical decision-making process. To 
mimic daily clinical practice, this proof-of-concept study aims to develop ML models that support decision-making 
using comprehensive clinical data up to key decision points in the ED workflow to detect appendicitis in patients 
presenting with AAP.

Methods  Data from the Dutch triage system at the ED, vital signs, complete medical history and physical 
examination findings and routine laboratory test results were retrospectively extracted from 350 AAP patients 
presenting to the ED of a Dutch teaching hospital from 2016 to 2023. Two eXtreme Gradient Boosting ML models 
were developed to differentiate cases with appendicitis from other AAP causes: one model used all data up to and 
including physical examination, and the other was extended with routine laboratory test results. The performance of 
both models was evaluated on a validation set (n = 68) and compared to the Alvarado scoring system as well as three 
ED physicians in a reader study.

Results  The ML models achieved AUROCs of 0.919 without laboratory test results and 0.923 with the addition of 
laboratory test results. The Alvarado scoring system attained an AUROC of 0.824. ED physicians achieved AUROCs of 
0.894, 0.826, and 0.791 without laboratory test results, increasing to AUROCs of 0.923, 0.892, and 0.859 with laboratory 
test results.
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Introduction
Patients presenting with acute abdominal pain (AAP), 
comprising 5–10% of the emergency department (ED) 
population, experience prolonged lengths of stay, aver-
aging over 4  h and exceeding 6  h for those undergoing 
computed tomography (CT) [1–3]. Causes range from 
benign and self-limiting to life-threatening conditions. 
Appendicitis, a prevalent cause of AAP and one of the 
most common emergency surgeries, usually manifests 
within a 24-hour time frame, although some cases are 
more chronic. Appendicitis can be subclassified into 
simple (non-perforated) and complex (gangrenous or 
perforated) conditions. Standard treatment involves an 
appendectomy, though conservative treatment, including 
pain control and antibiotics, is sometimes considered for 
simple appendicitis [4].

Patients with appendicitis usually present to the ED 
with AAP as their primary symptom. The diagnostic pro-
cess for AAP in the ED in developed countries typically 
includes: (1) triage, (2) assessment of vital signs, (3) med-
ical history and physical examination; (4) laboratory test-
ing; (5) selective medical specialist consultations; and/
or (6) imaging [1, 2]. In cases of suspected appendicitis, 
the aim of the diagnostic procedure is first to confirm or 
exclude appendicitis and second to stratify the condition 
[4].

Despite advancements in imaging techniques, which 
have significantly improved the accuracy of diagnos-
ing appendicitis, distinguishing appendicitis from other 
AAP causes remains a significant clinical challenge 
[5]. In Northwestern Europe and the United States, the 
negative appendectomy rate - that is, the proportion of 

Conclusions  Both ML models demonstrated comparable high accuracy in predicting appendicitis in patients with 
AAP, outperforming the Alvarado scoring system. The ML models matched or surpassed ED physician performance 
in detecting appendicitis, with the largest potential performance gain observed in absence of laboratory test results. 
Integration could assist ED physicians in early and accurate diagnosis of appendicitis.

Graphical abstract 

Keywords  Acute abdominal pain, Appendicitis, Machine learning, Artificial intelligence, Diagnostic follow-up, Clinical 
decision support, Emergency department



Page 3 of 12Schipper et al. World Journal of Emergency Surgery           (2024) 19:40 

appendectomies performed on patients without appen-
dicitis - ranges between 9% and 10.5% [6, 7]. The rate of 
missed appendicitis diagnoses ranges from 3.8 to 15.0% 
in children and from 5.9 to 23.5% in adults during ED vis-
its [8]. These false-negative diagnoses are associated with 
higher rates of perforation, postoperative complications 
and interventions, as well as longer hospitalizations [6, 
9]. Accurately recognizing the combination of signs and 
symptoms early in the ED workup is crucial to identify 
the risk of appendicitis, optimize the utility of diagnostic 
imaging, reduce the length of stay, and prevent negative 
surgical interventions.

To differentiate appendicitis from other AAP causes, 
various methods have been developed to stratify the 
risk of appendicitis and improve diagnostic accuracy 
and speed [e.g. 10–12]. The Alvarado score, introduced 
in 1986, is widely recognized as the best-known clinical 
scoring system for diagnosing appendicitis by combin-
ing signs, symptoms and laboratory test results [12, 13]. 
Although the literature has found the Alvarado score 
sensitive enough to rule out appendicitis, it lacks suffi-
cient specificity, leading to a high false-positive rate [13, 
14]. Machine learning (ML) models often show greater 
accuracy in predicting appendicitis compared to the 
Alvarado scoring system [15]. Unlike scoring systems for 
appendicitis that rely on a summation of points assigned 
to key clinical parameters, ML algorithms capture com-
plex, nonlinear relationships and interactions among 
parameters. However, most ML models have primarily 
focused on reducing negative appendectomies by identi-
fying candidates for surgery after the decision to operate 
has already been made [e.g. 8, 16–19]. Far fewer mod-
els have been applied to the broader AAP population 
[20–23]. Previous studies have not developed ML mod-
els designed to function as integrated decision-support 
systems within the ED workflow, specifically aimed at 
diagnosing appendicitis at the earliest possible stage. Fur-
thermore, direct performance comparisons between ML 
models and ED physicians remain unexplored.

The aim of this study is to develop two novel ML mod-
els focusing on two critical decision points early in the 
ED workup: (1) evaluation based on intake information, 
vital signs, medical history and physical examination, and 
(2) subsequent assessment after laboratory testing. The 
performance of these models will be compared to that 
of ED physicians in a reader study and to the Alvarado 
score.

Materials and methods
Data collection
Pseudonymized data were retrospectively collected from 
350 patients who presented with AAP and were reg-
istered with this complaint in the Dutch triage system 
at the ED of Jeroen Bosch Hospital, a Dutch teaching 

hospital in Den Bosch, between July 2016 and January 
2023.

These patients’ visits to the ED are referred to as cases. 
No exclusions were made based on age, pregnancy status, 
comorbidities, medication use, or symptom presentation 
(see patient population details in Additional File 2). This 
inclusive approach aimed to reflect the diversity encoun-
tered in daily clinical practice and to develop ML mod-
els applicable to the entire AAP population. To limit the 
influence of any medications on the data, the first series 
of measurements from each ED visit was extracted. To 
train the model to differentiate appendicitis from other 
AAP causes, including those with similar clinical presen-
tations, balanced subsampling was applied. This involved 
achieving equal numbers of appendicitis and other AAP 
cases. Additionally, among the other AAP cases, those 
suspected of appendicitis were balanced with those hav-
ing non-specific or other AAP causes based on initial 
assessments by primary care physicians or triage nurses 
upon ED arrival. Balanced subsampling is a data prepro-
cessing technique that enhances ML model performance 
on minority classes by balancing class distributions; it 
adjusts class frequencies without accounting for other 
parameters. No duplicate cases were introduced into our 
dataset during this process.

Other eligibility criteria included the availability of data 
from the initial patient evaluation relevant for building 
models at two key decision points in the ED workup. This 
included ED intake information, vital signs, medical his-
tory and physical examination findings from ED reports. 
In addition, blood and urine test results from standard-
ized laboratory order sets, routinely requested for ED 
patients, were collected for these 350 cases. Detailed 
information on these parameters can be found in Supple-
mental Tables 1 A to 1E in Additional File 1. Cases were 
excluded if they had insufficient medical history or physi-
cal examination findings or were missing more than 70% 
of the laboratory tests results or vital signs (n = 14), a 
threshold chosen to balance the preservation of enough 
cases while minimizing missing parameters. This resulted 
in a final dataset of 336 eligible cases. The data extrac-
tion was performed using CTcue (IQVIA Nederland B.V., 
Amsterdam, the Netherlands), a privacy-by-design data 
extraction tool that automatically pseudonymizes patient 
data by redacting personally identifiable information and 
hashing patient IDs.

Reference standard
The determination of ‘appendicitis’ versus ‘other AAP 
causes’ was based on three criteria: hospitalization, treat-
ment received (e.g. surgery), and International Classi-
fication of Diseases 10th Revision (ICD-10) codes. This 
classification identified 167 cases, for which final pathol-
ogy and/or radiology reports with confirmatory results 
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were also available. Among the confirmed appendicitis 
cases, 109 patients underwent surgery, while 58 received 
conservative treatment. Each case was meticulously 
reviewed by a team of medical coders and, if necessary, 
the classification was adjusted after a patient’s hospital-
ization or surgery. Other AAP cases included 169 cases: 
15 directly discharged from the ED and 154 patients lack-
ing both ICD-10 codes for appendicitis and surgery. In 
these cases, appendicitis was neither suspected by ED 
physicians during their examinations nor confirmed by 
radiology or pathology reports. While appendicitis can 
sometimes resolve without treatment, such cases are 
rare, and there was no clinical evidence of appendicitis in 
these patients.

Medical history and physical examination
Medical history and physical examination data provided 
in free-text entries in the ED reports were extracted from 
ED reports for each case. To structure this data, an ini-
tial annotation process was conducted by two research-
ers, who labeled all medical symptoms in 100 cases, 
resulting in 367 initial labels. The annotations were per-
formed using annotation software Doccano (version 1.4) 
[24]. Labels with a prevalence of less than 5% were then 
reviewed by two ED physicians for their diagnostic value. 
Those deemed clinically unrelated to AAP causes were 
excluded, while others were grouped under overarch-
ing labels, reducing the total to 289. This final set of 289 
labels was categorized into 73 parameters. These parame-
ters included 50 binary parameters (e.g., presence of nau-
sea) and 23 nominal parameters (e.g., location of pain). 
Another 236 cases were subsequently annotated using 
this structured framework.

Model development
To estimate the probability of appendicitis at two key 
decision points in the ED workup of AAP, two ML mod-
els were constructed using the eXtreme Gradient Boost-
ing (XGBoost) algorithm via the XGBoost package 
(version 2.0.3) [25]. The first model, coined the History 
Intake Vitals Examination (HIVE) model, used ED intake 
information, vital signs, medical history, and physical 
examination inputs. The second model, coined the HIVE-
LAB model, was extended with laboratory test results. 
XGBoost was selected due to its strong performance in 
classification tasks and its native ability to handle miss-
ing data, a key consideration in both this study and daily 
clinical practice.

For model development, data from 336 cases were split 
into training and validation sets. 80% was used for train-
ing and hyperparameter tuning (n = 268: nappendicitis=133, 
nother AAP causes=135) and 20% for validation (n = 68: 
nappendicitis=34, nother AAP causes =34). Repeated stratified 
10-fold cross-validation was used for training and tuning 

to preserve the class distribution across folds, with the 
mean performance result across repetitions used for tun-
ing the models. To handle binary and nominal param-
eters, a target-based encoding algorithm “CatBoost” 
(version 2.6.3) was used to encode binary and nominal 
parameters into numerical parameters representing sta-
tistical properties derived from the training data [26, 27]. 
Subsequently, both models were trained to optimize the 
area under the receiver operating characteristic curve 
(AUROC). Hyperparameters for the models were refined 
using Bayesian optimization through Optuna (version 
3.6.1) [28], involving 100 trials to identify the optimal 
settings (see Hyperparameter settings XGBoost in Addi-
tional File 2). Model interpretation was performed using 
SHapley Additive exPlanations (SHAP) values by calcu-
lating the percentage contribution of each parameter to 
the prediction of the XGBoost models using the TreeS-
HAP algorithm (version 0.41.0) [29]. The TRIPOD check-
list was followed to ensure increased transparency of the 
study’s methodology (Supplemental Table 2 in Additional 
File 1).

Reader study - expert diagnosis
A reader study was conducted to compare the outcomes 
of the HIVE and HIVE-LAB models with the clinical 
performance of ED physicians using the same validation 
set (n = 68). Each case was presented in its original for-
mat, mimicking the electronic health record system, and 
independently evaluated by three ED physicians with 
one, five, and ten years of post-qualification experience. 
Each ED physician scored the likelihood of appendici-
tis for each case on a scale from 0 to 100, with 0 being 
‘highly unlikely’ and 100 ‘very likely’. This scale mirrored 
the probability output of the models.

Initially, the physicians scored each case based on 
intake information, vital signs, medical history, and phys-
ical examination findings. Subsequently, they adjusted 
the likelihood score, if necessary, after evaluating the 
laboratory test results for the same case. This two-step 
evaluation process ensured that the assessments were 
comprehensive, reflective of real-world diagnostic prac-
tices, allowing for an assessment of the added value of the 
laboratory test results (See Example Case in Additional 
File 2).

Alvarado scoring system
The Alvarado scoring system, also known as MAN-
TRELS (Migration, Anorexia, Nausea-vomiting, Tender-
ness in right lower quadrant, Rebound pain, Elevation of 
temperature, Leukocytosis, Shift to the left), is a 10-point 
clinical scoring system developed for risk stratification of 
acute appendicitis for patients presenting with AAP (see 
Supplemental Table 3 in Additional File 1) [12]. A score 
of ≤ 4 is considered low risk, while a score of ≥ 7 high risk 
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of appendicitis necessitating specialist consultation and/
or further imaging [15]. This scoring system was applied 
to the validation set (n = 68) to compare performance 
with the HIVE model, the HIVE-LAB model, and ED 
physicians.

Statistical analysis
Input parameters are presented as medians with inter-
quartile ranges (IQR) or means with standard devia-
tions (SD), depending on their distribution (Table  1, 
Supplemental Tables 1 A–1 C in Additional File 1). Dif-
ferences in medians and means between cases with 
appendicitis and other AAP causes were assessed using 
Kruskal-Wallis tests or one-way ANOVA for continuous 
variables, and chi-square or Fisher’s Exact tests for cat-
egorical variables, as appropriate (Table 1, Supplemental 
Tables  1  A–1E in Additional File 1) [30]. DeLong’s test 
was employed to compare the AUROC values of the ML 
models, ED physicians, and the Alvarado score. Statisti-
cal significance was set at p < 0.05 (Table  2), and confi-
dence intervals for AUROC values were calculated via 
bootstrapping.

Results
Clinical parameters
Statistical analysis showed that cases with appendici-
tis exhibited distinct patterns compared to other AAP 
causes (Table 1). In medical history findings, symptoms 
such as migration to the right lower quadrant, continu-
ous pain, transportation pain, and movement pain were 
significantly more prevalent. In physical examination 
findings, pain in the right lower quadrant, McBurney’s 
sign, and rebound tenderness were more frequently 
observed. Laboratory test results for appendicitis showed 
significantly elevated levels of C-reactive protein, leuko-
cytes, neutrophils, as well as a notably lower potassium 
concentration.

Model performance
In differentiating appendicitis from other AAP causes, 
the HIVE model achieved an AUROC of 0.919 (± 0.024) 
on the validation set (Fig.  1A), while the HIVE-LAB 
model reached an AUROC of 0.923 (± 0.020) (Fig.  1B), 
with no statistically significant difference (Table 2). Using 
SHAP values, the top 10 contributing parameters for 
each model were identified. For the HIVE model, these 
parameters in descending order were: (1) McBurney’s 
sign, (2) body temperature, (3) pain migration, (4) mean 
arterial pressure (MAP), (5) nausea, (6) oxygen satura-
tion, (7) heart rate, (8) pain location (physical exami-
nation), (9) fever (medical history), (10) referrer type 
(e.g. primary care physician, self-referrer, ambulance) 
(Fig.  1C). These parameters collectively accounted for 
82.5% of the total contribution of all parameters in the 

HIVE model. For the HIVE-LAB model these were: (1) 
McBurney’s sign, (2) neutrophils, (3) potassium con-
centration, (4) body temperature, (5) MAP, (6) pro-
tein in urine, (7) monocytes, (8) oxygen saturation, (9) 
heart rate, (10) pain location (medical history) (Fig. 1D). 
Despite neutrophils and potassium being highly ranked 
in the HIVE-LAB model, the overall discriminative abil-
ity (AUROC) remained similar to the HIVE model. These 
10 parameters accounted for 68.5% of the total contribu-
tion of all parameters in the HIVE-LAB model. This indi-
cated that adding laboratory parameters did not provide 
additional predictive power but instead redistributed the 
importance among the features. The contribution of all 
parameters is shown in Supplemental Tables 4 A and 4B 
in Additional File 1.

Comparison of ML models with ED physicians’ diagnostic 
performance
During their initial assessment of each case in the valida-
tion set, reviewing intake information, vital signs, medi-
cal history, and physical examination findings, the three 
ED physicians achieved AUROC scores of 0.894 (± 0.076), 
0.826 (± 0.106), and 0.791 (± 0.117) in differentiating 
appendicitis from other causes of AAP (Fig.  2A). The 
HIVE model achieved an AUROC of 0.919 (± 0.023) and 
showed significantly higher performance than two of the 
three physicians (Fig. 1A; Table 2).

Upon reevaluation, adding laboratory test results did 
not lead to a statistically significant improvement in 
the performance of the ED physicians, with AUROCs 
of 0.923 (± 0.067), 0.892 (± 0.078), and 0.859 (± 0.098) 
(Fig.  2B). The HIVE-LAB model, with an AUROC of 
0.923 (± 0.020), neither showed a significantly differ-
ent performance compared to the ED physicians in this 
reevaluation (Fig. 1B; Table 2).

Evaluation of the Alvarado scoring system and comparison 
with ML models and ED physicians
The performance of the Alvarado scoring system was 
evaluated using the same validation set. The first analysis 
focused on specific sensitivity and specificity thresholds 
to assess its utility in ruling out and identifying appendi-
citis (Fig. 3A). At a threshold of ≤ 4, indicative of low risk, 
the Alvarado scoring system correctly ruled out 56% of 
patients without appendicitis (specificity of 56%), while 
88% of patients with appendicitis had scores higher than 
4 (sensitivity of 88%). When the threshold was raised 
to ≥ 7, indicative of high risk, the Alvarado scoring sys-
tem correctly identified 27% of patients with appendici-
tis (sensitivity of 27%) and correctly ruled out 100% of 
patients without appendicitis (specificity of 100%).

The second analysis focused on the ability of the 
Alvarado scoring system to distinguish between appen-
dicitis and other AAP causes compared to the ML 
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Labels Appendicitis (n = 167) Other AAP causes (n = 169) P value
ED Intake
Age 33

(18.5–51.5)
50
(27.0–68.0)

0.000

Sex Male 43% 36% 0.274
Female 57% 64%

Referrer Primary Care Physician 74% 57% 0.001
Self-referral 21% 37% 0.001
Hospital 3% 2% 0.750
Ambulance 1% 2% 0.371
Other Facility 0% 1% 1.000
Not reported 2% 1% 0.370

Pain Rating 6
(3.5–8.0)

6
(4.0–8.0)

0.227

Vital Signs
Temperature [°C] 37.3

(36.9–37.7)
37.0
(36.6–37.3)

0.000

Mean Arterial Pressure [mmHg] 93
(85–100)

100
(90–109)

0.000

Heart Rate [bpm] 82
(74–96.5)

85
(74–99)

0.730

Saturation [O2] 99
(98–100)

98
(96–100)

0.004

Medical history
Development of complaints Increase 36% 28% 0.375

Decrease 5% 9%
Unaltered 4% 4%
Combination 3% 4%
Not reported 52% 56%

Vomiting 56% 51% 0.272
Anorexia 37% 33% 0.515
Fever 19% 11% 0.083
Movement Pain 20% 10% 0.013
Transportation Pain 45% 28% 0.002
Pain Migration RLQ 36% 5% 0.000

Flanks 0% 2% 0.122
Absent 1% 1% 1.000
Not reported 63% 91% 0.000

Pain Location Right Lower Quadrant 37% 25% 0.033
Left Lower Quadrant 0% 2% 0.123
Right Upper Quadrant 1% 3% 0.448
Epigastric Region 4% 5% 1.000
Hypogastric Region 1% 1% 1.000
Periumbilical 16% 12% 0.344
Diffuse 8% 7% 0.540
Combination 26% 30% 0.596

Physical Examination

Table 1  Patient Characteristics (n = 336)
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models and the ED physicians. The Alvarado scoring 
system achieved a significantly lower AUROC of 0.824 
(± 0.095) compared to the HIVE model (0.919 ± 0.023) 
and the HIVE-LAB model (0.923 ± 0.020) (Figs.  1A-B 
and 3B; Table 2). The performance of ED physicians was 
also compared to the Alvarado scoring system, both 
with and without laboratory test results (Figs. 2A-B and 
3B; Table  2). Without laboratory test results, the ED 
physicians achieved AUROCs of 0.894 (± 0.076), 0.826 
(± 0.106), and 0.791 (± 0.117), which were not statistically 
significantly different from the AUROC of the Alvarado 
scoring system of 0.824 (± 0.095). Similarly, including 
laboratory test results did not lead to a statistically sig-
nificant improvement in the ED physicians’ AUROCs of 
0.923 (± 0.067), 0.892 (± 0.078), and 0.859 (± 0.098) com-
pared to the Alvarado scoring system.

Discussion
Diagnosing patients with AAP is clinically challeng-
ing due to the broad spectrum of symptoms and poten-
tial underlying conditions. This challenge contributes to 
a risk of misdiagnosis and to prolonged stays at the ED. 
Patients suspected of appendicitis are often misdiag-
nosed, which can result in missed diagnoses or negative 
appendectomies. This study demonstrates that an ML 
model using only vital signs, medical history, and physical 

examination data can accurately diagnose appendicitis 
early in the ED workup, matching or even surpassing the 
performance of ED physicians. Notably, incorporating 
laboratory test results did not significantly enhance the 
model’s predictive accuracy for diagnosing appendicitis.

These findings have important clinical implications. 
First, the ML models can assist in clinical decision-mak-
ing. They are particularly useful when laboratory results 
are delayed or unavailable. By reducing dependence on 
laboratory testing or even imaging studies, they opti-
mize resource efficiency. This expedites decision-making, 
enables earlier treatment, shortens hospital stays, and 
reduces costs. Second, the ML models and ED physicians 
outperformed the Alvarado score, showing superior abil-
ity to capture complex clinical relationships and render-
ing the Alvarado score redundant in our setting. Third, 
variability among ED physicians highlights the influence 
of individual experience. The ML models provide con-
sistent, objective assessments, standardizing diagnostic 
accuracy across clinicians. This is valuable in high-pres-
sure ED settings where biases and fatigue may impact 
decisions, and less experienced physicians (in residence) 
may benefit from additional support. Even non-signif-
icant improvements found in AUROCs between ML 
models and ED physicians can reduce missed diagnoses 
and unnecessary surgeries.

Labels Appendicitis (n = 167) Other AAP causes (n = 169) P value
Pain Location Right Lower Quadrant 38% 16% 0.000

Left Lower Quadrant 1% 3% 0.215
Right Upper Quadrant 1% 3% 0.215
Epigastric Region 0% 2% 0.248
Hypogastric Region 0% 1% 1.000
Periumbilical 4% 3% 0.767
Diffuse 10% 22% 0.003
Combination 31% 25% 0.276
Not Reported 26% 25% 1.000

McBurney’s Sign Present 58% 15% 0.000
Rebound Tenderness Present 38% 20% 0.000
Laboratory Test Results
C-Reactive Protein [mg/L] 49.0

(14–118)
20.5
(4–93.5)

0.000

Neutrophils [x10^9/L] 11.9 (± 4.9) 8.8 (± 4.7) 0.000
Leukocytes [x10^9/L] 14.7 (± 5.0) 11.7 (± 5.0) 0.000
Potassium [mmol/L] 3.8

(3.7–4.1)
4.1
(3.7–4.3)

0.001

Monocytes [x10^9/L] 0.7
(0.5–1)

0.6
(0.4–0.8)

0.000

Protein in Urine + 11% 7% 0.196
++ 4% 4%
+++ 1% 1%
Negative 59% 53%
Trace 13% 17%
Not Reported 11% 20%

Table 1  (continued) 
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Multiple scoring and artificial intelligence (AI)-based 
systems have been developed to improve diagnostic accu-
racy for AAP, offering valuable opportunities to enhance 
the diagnostic workup at the ED or surgery department. 
ML studies have employed a wide range of algorithms 
to predict appendicitis [17, 18, 23, 31, 32]. Several stud-
ies have successfully benchmarked ML models against 
the Alvarado score, demonstrating improved diagnos-
tic accuracy [20, 23, 33]. However, these studies exhibit 
significant heterogeneity in terms of patient populations, 
input features, ML algorithms, and outcome measures, 
complicating direct comparison between ML algorithms 
and models [15]. While existing models have made nota-
ble advancements in appendicitis diagnosis, they differ 
from the design of our study and face certain limitations. 
They typically require both clinical and laboratory data, 
or laboratory data alone [10–12, 20–29]. Including 
laboratory data can act as an additional obstacle in the 
diagnostic workup and delay diagnosis, while clinical sus-
picion is often established before laboratory test results 
are available. Moreover, many ML models are exclusively 
developed using data from patients who have undergone 
appendectomies, with the aim to reduce unnecessary 
surgeries, and were not designed to identify appendicitis 

in patients entering the ED [16–19, 34]. Additionally, 
these models have not been directly compared to ED 
physicians, leaving their potential to complement clinical 
expertise unclear.

Implementing ML models in clinical practice requires 
selecting an appropriate threshold that balances speci-
ficity and sensitivity, and optimizes positive or negative 
predictive values (PPV, NPV). This selection depends on 
local requirements and preferences, related to workload, 
appendicitis prevalence, and how referral pathways are 
organized from primary care to the ED (e.g. the ratio of 
self-referred to those referred by primary care) [5, 35]. 
Considering these factors, the HIVE model developed in 
our study enables effective risk stratification of appendi-
citis in patients with AAP, offering three potential imple-
mentation strategies. First, by leveraging a high PPV, the 
HIVE model can flag patients with a high predicted prob-
ability of appendicitis early in the ED workflow. Alter-
natively, primary care physicians could apply the HIVE 
model before referring patients to the ED, potentially 
improving the accuracy of referrals for suspected appen-
dicitis. In both scenarios, patients can be directed imme-
diately to the medical imaging department or surgery 
department while awaiting imaging, thereby reducing the 
burden on the ED. Second, by utilizing a high NPV, the 
HIVE model can identify patients with a low predicted 
probability of appendicitis. Although this does not rule 
out other serious causes of AAP, it allows clinicians to 
consider alternative diagnoses earlier in the evaluation 
process. For these patients, unnecessary imaging stud-
ies specifically targeting appendicitis, as well as negative 
appendectomies, can be avoided. Third, patients with 
medium predicted probabilities represent diagnostic 
uncertainty necessitating careful clinical assessment. The 
model helps flag these patients, prompting physicians to 
conduct further evaluations, such as additional diagnos-
tic tests or a period of observation, depending on clinical 
urgency. This approach ensures that patients who fall into 
a moderate risk category receive appropriate attention, 
reducing the likelihood of missed or delayed diagnoses.

However, several limitations must be acknowledged. 
First, both models rely on the medical history and physi-
cal examination notes documented by ED physicians. 
The models’ performance is inherently tied to the accu-
racy and completeness of these assessments, including 
the differential diagnoses considered and the thorough-
ness of physical examinations. To mitigate potential bias, 
it is crucial that ED physicians conduct comprehensive 
assessments and document their findings meticulously. 
Therefore, ED physicians follow a standardized set of 
components and questions for medical history and physi-
cal examination, ensuring these are completed for every 
patient regardless of clinical suspicion [36] This stan-
dardized approach is integrated into the electronic health 

Table 2  Statistical comparison of AUROC values among ML 
models, ED physicians, and the Alvarado scoring system using 
DeLong’s Test
Comparison AUROC ± CI P value
ML models
HIVE 0.919 ± 0.023 0.978
HIVE-LAB 0.923 ± 0.020
HIVE model / ED physicians without lab
Physician 1 0.919 ± 0.023 / 0.894 ± 0.076 0.375
Physician 2 0.919 ± 0.023 / 0.826 ± 0.106 0.037
Physician 3 0.919 ± 0.023 / 0.791 ± 0.117 0.007
HIVE-LAB model / ED physicians with lab
Physician 1 0.923 ± 0.020 / 0.923 ± 0.067 0.796
Physician 2 0.923 ± 0.020 / 0.892 ± 0.078 0.353
Physician 3 0.923 ± 0.020 / 0.859 ± 0.098 0.118
ED physicians without / with lab
Physician 1 0.894 ± 0.076 / 0.923 ± 0.067 0.182
Physician 2 0.826 ± 0.106 / 0.892 ± 0.078 0.058
Physician 3 0.791 ± 0.117 / 0.859 ± 0.098 0.177
ML models / Alvarado
HIVE vs. Alvarado 0.919 ± 0.023 / 0.824 ± 0.095 0.033
HIVE-LAB vs. Alvarado 0.923 ± 0.020 / 0.824 ± 0.095 0.031
ED Physicians without lab / Alvarado
Physician 1 0.894 ± 0.076 / 0.824 ± 0.095 0.247
Physician 2 0.826 ± 0.106 / 0.824 ± 0.095 0.980
Physician 3 0.791 ± 0.117 / 0.824 ± 0.095 0.646
ED Physicians with lab / Alvarado
Physician 1 0.923 ± 0.067 / 0.824 ± 0.095 0.071
Physician 2 0.892 ± 0.078 / 0.824 ± 0.095 0.240
Physician 3 0.859 ± 0.098 / 0.824 ± 0.095 0.599
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record system to promote consistency. Second, some 
parameters identified as important by the models may 
not typically be emphasized in diagnosing appendicitis. 
However, these parameters could be important for other 
AAP causes or may enhance the models’ overall predic-
tive performance when interpreted in combination with 
other clinical parameters. Third, both ML models were 
developed within a single-center context. Deploying them 
in different settings or patient populations would require 

a multi-center set-up and external validation to evaluate 
their generalizability and reliability across diverse clini-
cal environments and patient demographics [37, 38]. Our 
study was conducted in a Dutch hospital where primary 
care physicians act as gatekeepers to ED access, leading 
to a higher prevalence of serious conditions like appen-
dicitis in our cohort. This referral pattern may not repre-
sent ED settings without such strong gatekeeping systems 
or regions with a shortage of primary care physicians. 

Fig. 1  Receiver operating characteristic (ROC) plots for the HIVE model (A) and the HIVE-LAB model (B) in predicting appendicitis versus other causes 
of AAP using the validation population. The top 10 individual parameter contributions to the models are represented by SHapley Additive exPlanations 
(SHAP) values scaled and plotted as percentage contributions to the prediction (C, D). Parameters outside the top 10 contribute a combined total of 
17.5% to the HIVE model and 32.5% to the HIVE-LAB model. HIVE, intake, medical HIstory, Vital signs, physical Examination; HIVE-LAB, intake, medical 
HIstory, Vital signs, physical Examination, Laboratory testing; AAP, acute abdominal pain; Temp, Temperature; MAP, Mean Arterial Pressure; MH, Medical 
History; PE, Physical Examination

 



Page 10 of 12Schipper et al. World Journal of Emergency Surgery           (2024) 19:40 

For these settings, calibrating and possibly retraining the 
models to accommodate more heterogeneous patient 
populations is recommended. Furthermore, variations 
in routine laboratory testing protocols and laboratory 
analyzers used across EDs may affect the applicability 
of our HIVE-LAB model. In contrast, the HIVE model, 

which relies only on vital signs and clinical parameters, 
may offer greater generalizability to different clinical set-
tings. Expanding and validating the HIVE model across 
diverse patient populations and clinical environments is 
a promising direction for future research. Fourth, scal-
ing our model to other contexts is currently limited by 

Fig. 3  (A) Box plots displaying the Alvarado score distributions for cases with appendicitis (n = 34) and other causes of AAP (n = 34). Sensitivity and speci-
ficity thresholds are highlighted for ruling out appendicitis at a score of ≤ 4 (56% specificity, 88% sensitivity) and for identifying appendicitis at a score of 
≥ 7 (27% sensitivity, 100% specificity). (B) Receiver operating characteristic (ROC) plot using the Alvarado scoring system to predict the risk of appendicitis 
in the validation population. AAP, acute abdominal pain

 

Fig. 2  Receiver operating characteristic (ROC) plots illustrating the performance of three ED physicians in diagnosing cases of appendicitis versus other 
causes of AAP within the same validation population. (A) Performance of ED physicians using intake, medical history, vital signs, physical examination 
information. (B) Performance of ED physicians extended with laboratory test results. ED, emergency department; AAP, acute abdominal pain

 



Page 11 of 12Schipper et al. World Journal of Emergency Surgery           (2024) 19:40 

the manual processing required for unstructured medi-
cal history and physical examination data. Future stud-
ies should investigate automated methods for processing 
such unstructured data, which would enable the use of 
larger and more diverse datasets without necessitating 
extensive resources. The annotated data from our study 
could serve as a valuable basis for developing these auto-
mated processing techniques. Lastly, another challenge is 
integrating ML models into clinical workflows. Embed-
ding these tools into electronic health record systems or 
dashboards with user-friendly interfaces and actionable 
outputs, based on agreed PPV/NPV thresholds, is essen-
tial to streamline the workflow for appendicitis. Training 
ED and surgical staff to interpret predictions and under-
stand limitations, such as applicability to patients tri-
aged for acute abdominal pain, is essential. Pilot studies 
or phased rollouts can build trust, address barriers, and 
ensure surgeon acceptance for broader implementation.

In conclusion, this study highlights the potential of 
an ML model to aid physicians in diagnosing appendi-
citis using only vital signs, medical history, and physical 
examination data, without relying on laboratory test-
ing. The model outperformed the Alvarado scoring sys-
tem and two out of three experienced ED physicians in a 
reader study. The comparable performance between the 
Alvarado score and ED physicians underscores the need 
for enhanced diagnostic tools. Integrating this model into 
emergency care can enhance the early differentiation of 
appendicitis from other causes of AAP during the ED 
workup.
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